direct product, metabelian, supersoluble, monomial, A-group
Aliases: C2×D52, C52⋊C23, C10⋊1D10, C5⋊D5⋊C22, (C5×C10)⋊C22, (C5×D5)⋊C22, (D5×C10)⋊5C2, C5⋊1(C22×D5), (C2×C5⋊D5)⋊4C2, SmallGroup(200,49)
Series: Derived ►Chief ►Lower central ►Upper central
C52 — C2×D52 |
Generators and relations for C2×D52
G = < a,b,c,d,e | a2=b5=c2=d5=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
Subgroups: 436 in 74 conjugacy classes, 28 normal (6 characteristic)
C1, C2, C2, C22, C5, C5, C23, D5, D5, C10, C10, D10, D10, C2×C10, C52, C22×D5, C5×D5, C5⋊D5, C5×C10, D52, D5×C10, C2×C5⋊D5, C2×D52
Quotients: C1, C2, C22, C23, D5, D10, C22×D5, D52, C2×D52
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
(1 18)(2 17)(3 16)(4 20)(5 19)(6 13)(7 12)(8 11)(9 15)(10 14)
(1 5 4 3 2)(6 10 9 8 7)(11 12 13 14 15)(16 17 18 19 20)
(1 13)(2 14)(3 15)(4 11)(5 12)(6 18)(7 19)(8 20)(9 16)(10 17)
G:=sub<Sym(20)| (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,18)(2,17)(3,16)(4,20)(5,19)(6,13)(7,12)(8,11)(9,15)(10,14), (1,5,4,3,2)(6,10,9,8,7)(11,12,13,14,15)(16,17,18,19,20), (1,13)(2,14)(3,15)(4,11)(5,12)(6,18)(7,19)(8,20)(9,16)(10,17)>;
G:=Group( (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,18)(2,17)(3,16)(4,20)(5,19)(6,13)(7,12)(8,11)(9,15)(10,14), (1,5,4,3,2)(6,10,9,8,7)(11,12,13,14,15)(16,17,18,19,20), (1,13)(2,14)(3,15)(4,11)(5,12)(6,18)(7,19)(8,20)(9,16)(10,17) );
G=PermutationGroup([[(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)], [(1,18),(2,17),(3,16),(4,20),(5,19),(6,13),(7,12),(8,11),(9,15),(10,14)], [(1,5,4,3,2),(6,10,9,8,7),(11,12,13,14,15),(16,17,18,19,20)], [(1,13),(2,14),(3,15),(4,11),(5,12),(6,18),(7,19),(8,20),(9,16),(10,17)]])
G:=TransitiveGroup(20,59);
C2×D52 is a maximal subgroup of
D5.D20 D10⋊F5 D52⋊C4 C20⋊D10 D10⋊D10
C2×D52 is a maximal quotient of
D20⋊5D5 D20⋊D5 Dic10⋊D5 D10.9D10 Dic10⋊5D5 C20⋊D10 Dic5.D10 D10.4D10 D10⋊D10
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 10I | ··· | 10P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | ··· | 10 |
size | 1 | 1 | 5 | 5 | 5 | 5 | 25 | 25 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 10 | ··· | 10 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | D5 | D10 | D10 | D52 | C2×D52 |
kernel | C2×D52 | D52 | D5×C10 | C2×C5⋊D5 | D10 | D5 | C10 | C2 | C1 |
# reps | 1 | 4 | 2 | 1 | 4 | 8 | 4 | 4 | 4 |
Matrix representation of C2×D52 ►in GL4(𝔽11) generated by
10 | 0 | 0 | 0 |
0 | 10 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
3 | 10 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
8 | 1 | 0 | 0 |
3 | 3 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 3 | 10 |
0 | 0 | 1 | 0 |
10 | 0 | 0 | 0 |
0 | 10 | 0 | 0 |
0 | 0 | 3 | 10 |
0 | 0 | 8 | 8 |
G:=sub<GL(4,GF(11))| [10,0,0,0,0,10,0,0,0,0,1,0,0,0,0,1],[3,1,0,0,10,0,0,0,0,0,1,0,0,0,0,1],[8,3,0,0,1,3,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,3,1,0,0,10,0],[10,0,0,0,0,10,0,0,0,0,3,8,0,0,10,8] >;
C2×D52 in GAP, Magma, Sage, TeX
C_2\times D_5^2
% in TeX
G:=Group("C2xD5^2");
// GroupNames label
G:=SmallGroup(200,49);
// by ID
G=gap.SmallGroup(200,49);
# by ID
G:=PCGroup([5,-2,-2,-2,-5,-5,328,4004]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^5=c^2=d^5=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations